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It is shown, by direct numerical simulations, that the skin-friction drag in a fully
developed channel can be sustained below that corresponding to the laminar profile
when the flow is subjected to surface blowing and suction in the form of an upstream
travelling wave. A key mechanism that induces the sub-laminar drag is the creation of
positive (negative) Reynolds shear stress in the wall region, where normally negative
(positive) Reynolds shear stress is expected given the mean shear. This mechanism
is contained in the linearized Navier–Stokes equations, thus allowing linear analysis
of the observed phenomena. When applied to a fully developed turbulent channel
flow, skin-friction drag is also significantly reduced by an upstream travelling wave,
demonstrating that the surface blowing and suction in the form of such a wave is
also effective in fully developed turbulent flows. Consideration of the energy budget
shows a possibility of net drag reduction in turbulent channel flows with the present
open-loop control.

1. Introduction
The minimum sustainable drag in a fully developed channel (pipe) flow is of

fundamental importance, as it can be used as a basis for performance limitations
for various controllers designed to reduce skin-friction drag in channel (pipe) flow.
Bewley (2001, see also Bewley & Aamo 2004) proposed the following conjecture
(‘Bewley’s conjecture’ hereinafter):

“The lowest sustainable drag of an incompressible constant mass-flux channel flow, when controlled via

a distribution of zero-net mass-flux blowing/suction over the no-slip channel walls, is exactly that of the

laminar flow.”

This conjecture can be elucidated by a useful expression for skin-friction drag in fully
developed channel flows (Fukagata, Iwamoto & Kasagi 2002 and Bewley & Aamo
2004):
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Here, all quantities are normalized by the centreline velocity of the laminar Poiseuille
flow (Uc = 3

2
Ub, Ub is the bulk velocity) and the channel half-height (δ), U denotes

the mean velocity, Re the Reynolds number based on the laminar centreline velocity,
and u′v′ is the Reynolds shear stress. In this paper, u, v, and w denote, respectively,
the velocity component in the streamwise (x), wall-normal (y), and spanwise (z)
directions, and the prime denotes a fluctuating quantity. Note that (1.1) is valid for
all channel flows with the same mass flux as the base laminar flow (4/3 with the
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present normalization). The first term on the right-hand side of (1.1) represents the
mean wall-shear rate of laminar flow (U = 1 − y2), and therefore (1.1) shows that
skin-friction drag in a channel flow consists of the laminar drag plus the y-weighted
integral of u′v′. From the viewpoint of (1.1), Bewley’s conjecture is equivalent to
saying that the y-weighted integral of u′v′, with and without control input, is always
positive in channel flows. For regular channel flows without control, this is the
case, since the Reynolds shear stress in the lower half of the channel (−1 <y < 0)
is negative, while the opposite is true in the upper half of the channel (0< y < 1).
As such, the skin-friction drag in transitional and turbulent channel flows is higher
than that of the corresponding laminar flow with the same mass flux. With a form
of periodic control, Bewley & Aamo (2004) report that they could not sustain the
Reynolds shear stress necessary to yield drag below the laminar value. They provide
phenomenological justification by a Reynolds analogy between convective momentum
transport and convective heat transport, but they left the proof of the conjecture as
an open problem.

The objective of this paper is to explore a control input, in the form of zero-net-
mass-flux blowing and suction on the wall, that can sustain the Reynolds shear stress
in such a way that the y-weighted integral of u′v′ remains negative. In the following
sections, we shall show that a control input in the form of an upstream travelling
wave indeed produces the Reynolds shear stress that makes a negative contribution
to the total drag, resulting in sustained sub-laminar drag in a fully developed channel
flow. It is worth pointing out that although control input in the form of surface
blowing and suction used in the present work is easy to implement numerically, it
may not be straightforward to implement in real flows. An alternative possibility is
discussed in § 5.

2. Linear analysis
Recent studies have shown that certain linear mechanisms play important roles in

turbulent boundary layers (for example, see Jiménez & Pinelli 1999; Kim & Lim 2000).
Recognizing the role of linear mechanisms, particularly that of self-sustaining near-
wall turbulence in turbulent boundary layers, several investigators have successfully
applied modern control theories to develop optimal controllers based on the linearized
Navier–Stokes equations (see, for example, Bewley 2001 and Kim 2003 and references
therein). The success of these controllers when applied to fully nonlinear flows further
demonstrates the usefulness of linear analysis in designing controllers for fully non-
linear flows. Here, we first study the effect of travelling control waves on the Reynolds
shear stress by examining the solution to the linearized Navier–Stokes equations.

The linearized Navier–Stokes equation for a two-dimensional channel flow can be
written as

∂v̂

∂t
= (∇2)−1

(
−iαU∇2 + iα

d2U
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+
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Re
∇4

)
v̂, (2.1)

where v̂ denotes the Fourier-transformed wall-normal velocity perturbation (v′),
∇2 = ∂2/∂y2 − α2, and α is a wavenumber in the streamwise direction. Equation (2.1)
can be written in the following state-space representation (for further details, see Kim
2003):

dx
dt

= Ax + Bu, (2.2)
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Figure 1. �D in steady state at Re= 2000 and a = 0.1: (a) downstream travelling waves
(c > 0); (b) upstream travelling waves (c < 0).

where the vector x represents the ‘state’ of the system and consists of v̂ in Galerkin-
Chebyshev space. The system matrix A is related to the linear operator in (2.1), while
the input matrix B and the control u determine how the control input affects the
state. For any control u, the solution to equation (2.2) can be found by:

x(t) = eAt x(0) +

∫ t

0

eA(t−τ )Bu(τ ) dτ. (2.3)

We consider the solution when control input is introduced as surface blowing and
suction in the form of a travelling wave. The initial objective of this study was to
develop a control strategy for viscous drag reduction through periodic control of
a turbulent boundary layer. In the process of optimizing the control input defined
at multiple wavenumbers, it was observed that certain upstream travelling waves
reduced the drag, while certain downstream travelling waves increased the drag. In
order to simplify our analysis, we consider travelling control waves consisting of a
single wavenumber. Such a control can be expressed in physical space as boundary
conditions for v:

vw = a cos(α(x − ct)), (2.4)

where a and c denote the amplitude and wave speed of blowing/suction on the wall,
respectively. In the present study, the blowing/suction (2.4) is implemented on both
walls in varicose mode, i.e. the upper and lower walls have the blowing/suction in
phase at the same streamwise locations. Note that, with stable systems, exp(At) → 0
as t → ∞. Given control input (2.4), equation (2.3) can be analytically solved for v̂ as
t → ∞, and the Reynolds shear stress (u′v′) is obtained using the continuity equation
(iαû + ∂v̂/∂y =0).

Figure 1 shows the y-weighted integral of u′v′ as a function of the wave speed for
Re = 2000 and a = 0.1. Here, �D is defined as

�D =
3

2
Re

∫ 1

−1

u′v′ y dy. (2.5)

Note that �D is positive (increased drag) with downstream travelling waves (c > 0),
whereas it is negative (reduced drag) with upstream travelling waves (c < 0) except
near small negative c (slow upstream travelling wave). Note also that there exists an
optimal wave speed, where �D reaches its minimum (with negative c) and maximum
(with positive c). We mention in passing that the large peak with a positive c is
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related to the most observable and controllable system mode. Also, although this
large production of �D at a certain c is of no interest to the present study, it can be
useful in certain applications and warrants further study.

It is apparent from the linear analysis that certain surface blowing and suction in
the form of an upstream travelling wave can induce the Reynolds shear stress in such
a way that the total drag could be less than that of the laminar flow. This is contrary
to Bewley’s conjecture. Strictly speaking, however, the linear analysis assumes that
the mean velocity profile, and hence the drag, is not affected by perturbations (i.e. the
system matrix A is independent of x). The real effect of travelling waves on the drag
must be investigated by a direct numerical simulation, where the nonlinear effects
are included. In the following section, we begin investigating whether such Reynolds
shear stress can be sustained in nonlinear flows with the same control input.

Bewley & Aamo (2004) provided a phenomenological justification by an analogy
between convective momentum transport and convective heat transport. Clearly, this
analogy does not hold. This failure of the analogy, however, is not due to nonlinearity
of momentum transport since the present analysis is linear. Rather, it is due to dif-
ferences in the linear equations. Among others, convective heat transport is governed
by a single scalar equation, whereas convective momentum transport is governed by
two equations coupled through the continuity equation. The present linear analysis
indicates that a certain flow-field unsteadiness induced by wall-normal motion can
decelerate the momentum transport in the direction of viscous diffusion, whereas
the heat transport is always accelerated by flow-field unsteadiness as pointed out by
Bewley & Aamo (2004).

3. Two-dimensional channel flow
We will first study the effect of travelling waves in two-dimensional channel flows.

Disturbances are finite but they are two-dimensional, similar to those considered
by Bewley & Aamo (2004). A pseudo-spectral code similar to that used by Kim,
Moin & Moser (1987) is employed. Simulations are conducted at Re = 2000, and
the computational domain of 4πδ × 2δ is used in the streamwise and wall-normal
directions, respectively, with a 32 × 65 grid. The mean pressure gradient is varied to
maintain a constant mass flux, and the total drag is measured by averaging the mean
velocity gradient on both walls.

Figure 2 shows the results for a travelling wave of α = 0.5 at c = −2. All simulations
start from the laminar flow with no initial disturbances, and a steady state is reached
when t > 500 as shown in figure 2(a). It is apparent that the sub-laminar drag is
sustained for all amplitudes shown. Figure 2(b) shows that the results from the linear
analysis agree with those from direct numerical simulations for small amplitudes. As
expected, the nonlinear results deviate from the linear solutions as the amplitude is
increased (figure 2b).

In order to examine the physical mechanism responsible for drag reduction by
the upstream travelling waves, we performed numerical simulations of ‘channel flow’
without the imposed mean flow, i.e. U = 0 everywhere initially and the imposed mean
pressure gradient was set to zero. Blowing and suction as prescribed in (2.4) was
applied, and the simulations were carried out until a statistically steady state was
reached. The momentum balance for this flow is

d
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1

Re

dU
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Sub-laminar drag in a fully developed channel flow 313

t

D

250 500 750 10000

1

2

3
(a) (b)

a = 0.01, 0.02, 0.05,
0.1, 0.2, 0.3

a

–∆
D

10–2 10–1 100

10–2

10–1

100

101

linear
DNS

Figure 2. Viscous drag in a two-dimensional channel flow with α = 0.5 and c = −2: (a) time
histories of D for various control amplitudes; (b) �D in a steady state as a function of control
amplitudes.
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Figure 3. Contours of v′ (top), u′ (middle) and u′v′ (bottom) near the lower wall with
a standing wave. Contour levels for v′, u′ and u′v′ are −0.01–0.01, −0.02–0.02 and
−0.0001–0.0001, respectively (20 levels).

The integration constant C must be zero to satisfy the boundary conditions. A
standing wave (c = 0 in (2.4)) created no net −u′v′ as expected from the symmetry
of the problem. Upstream travelling waves created positive u′v′ near the lower wall,
which was balanced by a positive dU/dy, implying that U is positive. In other
words, upstream travelling waves induced a net mass flux in the opposite direction.
Downstream travelling waves would create the opposite effect due to the apparent
symmetry. The amount of induced mass flux was proportional to the amplitude of
the travelling wave. Contours of v′, u′, and u′v′ near the lower wall with a standing
wave and an upstream-travelling wave are shown in figures 3 and 4, respectively. It
is apparent that the travelling wave had a different impact on the phase of u′ and
v′. Figure 5 illustrates the effect of standing and travelling waves on u′ and v′ at a
location near the lower wall (y = −0.95) at ωt = 2π. With a standing wave, the phase
of u′, which is related to that of dv′/dy through the continuity equation, is 90◦ out
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Figure 4. Contours of v′ (top), u′ (middle) and u′v′ (bottom) near the lower wall with an
upstream travelling wave. Contour levels are the same as those used in figure 3.
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of phase as shown in the figure. With an upstream travelling wave, the phase of v′

remains approximately the same as that of the travelling wave, while that of u′ is
leading (upstream direction) that of v′. This phase lead in u′ results in a net positive
Reynolds stress as can be seen from

v′ = c1 cos(αx), (3.2)

u′ = c2 sin(αx + φ), (3.3)

u′v′ = c1c2sin(αx + φ) cos(αx)

= 1
2
c1c2 sin φ. (3.4)

With a positive φ as shown in figure 5, u′v′ is positive. With a downstream travelling
wave, φ is negative, resulting in a negative u′v′. This phase shift in u′ resulted in net
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Figure 6. �D as a function of the wave speed and wavenumber for a =0.1.

positive (negative) Reynolds shear stress with an upstream (downstream) travelling
wave, which in turn induced net mass flux in the direction opposite to the travelling
wave. The effect of travelling waves in a channel flow would be similar, although it
would have been modified by the presence of mean U driven by the mean pressure
gradient. Since an upstream travelling wave induces a net mass flux in the streamwise
direction, the amount of mass flux to be driven by the pressure gradient in the channel
flow with a fixed mass flux is reduced, resulting in reduced drag. If we had fixed the
mean pressure gradient instead, the net mass flux in the channel would have increased
due to the positive mass flux induced by an upstream travelling wave.

The flow remains stable for large a as the drag continues to decrease. However,
when the amplitude exceeds a certain value, the induced mass flux exceeds the fixed
mass flux. In fact, the drag (and hence the pressure force required to maintain the
same mass flux) becomes negative as the entire flow is driven by the power required
to provide the blowing and suction, and comparison with a channel flow is no longer
meaningful. With downstream travelling waves (c > 0), on the other hand, the flow
becomes unstable and the drag increases drastically as a is increased.

Figure 6 shows drag variations as a function of the wave speed for different
streamwise wavenumbers with a fixed amplitude a = 0.1. Note that �D in nonlinear
simulations represents the change in the total drag (see equation (1.1)). The nonlinear
results show the same trend observed in the linear solutions: that is, �D becomes
larger for smaller α, and there is an optimal wave speed that induces the minimum
�D. The optimal wave speed for nonlinear simulations appears to be slightly more
negative (faster upstream) than that of the linear solutions.

4. Turbulent channel flow
In this section, we investigate the effect of travelling waves in a turbulent channel

flow. The same code is used to perform direct numerical simulations of a turbulent
channel flow at Re =2000. The computational domain is 4πδ × 2δ × 4πδ/3 in the
streamwise, wall-normal and spanwise directions, respectively, and 64 × 97 × 64 grid
points are used in each direction. All simulations were started from a turbulent
channel flow that had reached a steady state without control input. Figure 7 shows
time histories of D in a turbulent channel flow. An upstream travelling wave at
α = 0.5 with c = −2 is applied on both walls in varicose mode, as was the case for the
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Figure 7. Time histories of D in a turbulent channel flow for α = 0.5 and c = −2.
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channel for different control amplitudes. This is for the case of α = 0.5 and c = −2.

two-dimensional channel discussed in § 3. The same parameters as in two-dimensional
channel flow were used, and they are by no means optimal ones for turbulent
channel flows. Similar to the two-dimensional flows, a significant drag reduction is
obtained, and the reduction is greater for larger amplitudes (about 30 % and 70 %
drag reduction, respectively, with amplitudes 0.1 and 0.25). Note that, with a =0.25,
the sustained drag is sub-laminar even for this three-dimensional flow. It is worth
noting, however, that this amplitude is much larger than that used in the opposition
control of Choi, Moin & Kim (1994) and in the LQG control of Lee et al. (2001).

Figure 8 shows the total shear stress for the case of α = 0.5 and c = −2 with
a =0, 0.1 and 0.25. The total shear stress for each case is a straight line, indicating
that the flow has indeed reached a statistically steady state. Also shown in the figure
are viscous stress (dU/dy) and Reynolds shear stress (u′v′). The positive u′v′ in
uncontrolled turbulent flow (note that only the upper half of the channel is shown
in the figure, where the Reynolds shear stress is normally positive) is decreased by
the effect of the upstream travelling wave. For the case of a = 0.25, u′v′ near the wall
becomes negative, which in turn results in sub-laminar drag.
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The efficiency of the present control input in the form of a travelling wave is of
great interest. In the present study, the efficiency η is defined as

η =
Pdrag + Pinput

P0

. (4.1)

Here, P0, Pdrag and Pinput denote the power required for uncontrolled flow, the power
required for drag-reduced flow, and power input for blowing and suction, respectively,
and they can be expressed as

P0 =
4

3

1

Re
D0, Pdrag =

4

3

1

Re
D, Pinput =

(
pw + 1

2
v2

w

)
vw, (4.2)

where D0 denotes the mean wall-shear rate of uncontrolled flow, and pw and vw are
the pressure and wall-normal velocity at the wall, respectively. Recall that the bulk
velocity used in defining the power is 2/3 with the present normalization and the total
drag is the sum of the drag on each wall. Also note that additional power required
to account for the friction loss associated with blowing and suction through the wall
is not included in (4.1). For a = 0.1 and a = 0.25, the efficiency η was found to be
0.76 and 0.81, respectively. In other words, the total power required to have the same
mass flux was only 76% and 81% of the power required in a channel without control.
Recall that there was about 30% and 70% drag reduction for a = 0.1 and a = 0.25,
respectively. In comparison, the opposition control of Choi et al. (1994) reduced drag
in a channel by about 30% and η was found to be about 0.7. For that closed-loop
control, Pinput was negligible compared to P0, and therefore the power saved is directly
related to the reduced drag. For the present open-loop control, however, Pinput was
significant, and the power saved was less (especially for high a) than the saving due to
reduced drag. This was in part due to the large amplitudes of the travelling waves. Its
low power saving notwithstanding, it is remarkable that substantial drag reduction
can be achieved in a turbulent channel flow with such a simple open-loop control.

5. Concluding remarks
Motivated by Bewley’s conjecture (Bewley 2001), we investigated the possibility of

achieving sub-laminar drag in a fully developed channel flow. Sustainable sub-laminar
drag was obtained when the flow was subjected to blowing and suction at the wall in
the form of an upstream travelling wave. It was found, both from linear analysis and
nonlinear simulations, that certain upstream travelling waves induce the Reynolds
shear stress in such a way that it makes a negative contribution to the total viscous
drag. This was the case not only for the two-dimensional channel flow considered
by Bewley & Aamo (2004), but also for a three-dimensional turbulent channel flow.
Note that the Reynolds shear stress induced by upstream travelling waves reduces the
production of kinetic energy, and therefore the flow remains stable for large-amplitude
upstream travelling waves.

Downstream travelling waves, on the other hand, increase the drag. The linear
analysis shows that at certain wave speeds the drag increase is dramatic. There are
certain applications where the increase in Reynolds shear stress could be desirable.
For example, an optimized downstream travelling wave could be used to prevent or
delay separation in turbulent boundary layers subject to a strong pressure gradient
(e.g. in a diffuser or flow over an airfoil). The optimal use of downstream travelling
waves is something that warrants further study.

The open-loop control presented was discovered serendipitously while exploring
periodic control of turbulent boundary layers. Unlike the cyclic application of a
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pressure feedback control (turning on and off their ‘win-win’ mechanism) by Bewley &
Aamo (2004), our periodic optimization specifically tasked the wall-normal surface
blowing/suction control to return the flow state back to its initial condition. Both
the time period of control and initial state were part of the optimization (see Speyer
1996). Numerically calculated gradients were used to find a control history, an initial
state, and a time period that minimized viscous drag. The two-dimensional travelling
wave was discovered as we simplified the optimization to make the problem more
tenable. The control presented in this paper is not an optimal solution; our purpose
was to investigate whether a sub-laminar drag can be sustained in a fully developed
channel flow. In the light of this new finding, optimization is underway. In particular,
we plan to explore control input in the form of spanwise and obliquely travelling
waves as well as constructing periodic regulators to form closed-loop solutions.

Finally, the current control scheme, consisting of surface blowing and suction in the
form of travelling waves, is mathematically simple (and hence easy to implement in
numerical experiments), yet it may not be straightforward to implement in real flows.
For example, additional space is required to retain the flow through the walls, and
the additional hardware required to control blowing and suction may be complicated.
However, a moving surface with wavy motion would produce a similar effect, since
wavy walls with small amplitudes can be approximated by surface blowing and
suction. We plan to perform simulations over moving wavy walls.
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